Möbius disjointness along ergodic sequences for uniquely ergodic actions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodic theorems along sequences and Hardy fields.

Let a(x) be a real function with a regular growth as x --> infinity. [The precise technical assumption is that a(x) belongs to a Hardy field.] We establish sufficient growth conditions on a(x) so that the sequence ([a(n)])(infinity)(n=1) is a good averaging sequence in L2 for the pointwise ergodic theorem. A sequence (an) of positive integers is a good averaging sequence in L2 for the pointwise...

متن کامل

A Uniquely Ergodic Cellular Automaton

We construct a one-dimensional uniquely ergodic cellular automaton which is not nilpotent. This automaton can perform asymptotically infinitely sparse computation, which nevertheless never disappears completely. The construction builds on the self-simulating automaton of Gács. We also prove related results of dynamical and computational nature, including the undecidability of unique ergodicity,...

متن کامل

Topological Mixing and Uniquely Ergodic Systems

Every ergodic transformation (X, 7, :~,/z) has an isomorphic system (Y, U, ~, v) which is uniquely ergodic and topologically mixing.

متن کامل

Every Ergodic Measure Is Uniquely Maximizing

Let Mφ denote the set of Borel probability measures invariant under a topological action φ on a compact metrizable space X. For a continuous function f : X → R, a measure μ ∈ Mφ is called f -maximizing if ∫ f dμ = sup{ ∫ f dm : m ∈Mφ}. It is shown that if μ is any ergodic measure in Mφ, then there exists a continuous function whose unique maximizing measure is μ. More generally, if E is a non-e...

متن کامل

Strongly Ergodic Sequences of Integers and the Individual Ergodic Theorem

Let S = {ki,ki, ...} be an increasing sequence of positive integers. We call S strongly ergodic if for every measure preserving transformation T on a probability space (Cl, J, P) and every / £ Li(f2) we have limn-»oo(l/n) J^^j f(TkiuJ) = Pf(w) a.e. where Pf is the appropriate limit guaranteed by the individual ergodic theorem. We give sufficient conditions for a sequence S to be strongly ergodi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 2018

ISSN: 0143-3857,1469-4417

DOI: 10.1017/etds.2017.134